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Compressive failure and kinking in uniaxially 
aligned glass-resin composite under 
superposed hydrostatic pressure 
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The failure process in uniaxially-aligned 60% fibre volume fraction glass fibre-epoxide 
compressive specimens strained parallel to the fibre axis was investigated at atmospheric 
and superposed hydrostatic pressures up to300 MN m -2. The atmospheric strength was 
about 1.15 GN m -2 (about 20% less than the tensile) and strongly pressure dependent, 
rising to over 2.2 GN m -2 at 300 MN m -2 pressure, i.e. by about 30% per 100 MN m -2 of 
superposed pressure. The corresponding figure is 22% if the maximum shear stress and 
not the maximum principal compressive stress is considered. This is incompatible with 
atmospheric compressive failure mechanisms controlled by weakly dependent or pressure 
independent processes, e.g. shear of the fibres. The results also could not be satisfactorily 
interpreted in terms of microbuckling of individual fibres. Kinking, involving buckling of 
fibre bundles was proposed as the mechanism of failure propagation, but the critical stage 
(for this glass reinforced plastic) is suggested as being yielding of the matrix, which 
initially restrains surface bundles from buckling. A strong pressure dependent failure 
criterion, about 25% increase per 100 MN m -2, was derived by modifying the Swif t -  
Piggott analysis of deformation of initially curved fibres. It is postulated that it is the 
axial compression that causes bundle curvature. Other systems, particularly carbon fibre- 
reinforced plastic, in which there appears to be a transition in the critical stage of failure 
from bundle buckling to matrix yielding with increasing superposed pressure, are also 
considered. 

1. Introduction 
It has been suggested that composite compressive 
strength can be limited by the strength of the 
fibres either in compression (acting individually 
as columns) or, to account for similarities between 
compressive and tensile strengths, in shear [1, 2]. 
Compressive failure has also been associated with 
the matrix; either as "shear instability" [3] con- 
trolled by the shear modulus or by the stress in it 
reaching a critical value, as postulated initially by 
Hayashi and Koyama [4]. The former theory over- 
estimates the strengths of glass and carbon/resin 
systems as also, more seriously, of metal matrix 
composites; the latter requires that the composite 

should fail at the matrix yield strain, which is not 
generally observed [5]. 

Compressive strength has also been reported to 
be influenced by factors such as fibre-matrix 
adhesion (controlling interfacial splitting), fibre 
linearity and local misalignment [6]. Piggott [6] 
considered fibres possessing initial curvature and 
adapted the sinusoidal fibre model of Swift [7] to 
compressive loading. For a short length of fibre 
of diameter, d, the compressive stress in it was 
postulated as being: 
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where R is the minimum radius of curvature of  
t 

the fibre, at, the transverse stress exerted on the 
fibres by the matrix, and a and X the amplitude 
and wavelength of the sine curve, respectively. 
Piggott argued that, as af increases, unless some 
other failure process intervenes (e.g. fibre yielding 
and failure), o't will become large enough to cause 
fibre/matrix separation or matrix yielding, at. 

In Piggott's [6] terminology glass fibres are 
"non-yielding" and he postulated that the fibre 
stress at composite failure is close to the fibre 
tensile strength for Vf < 0.4, but that with increas- 
ing fibre volume fraction, Vf, the composite 
strength fails below a modified rule of mixtures 
prediction and failure by debonding or splitting is 
governed by adhesive strength or compressive or 
yield strength of the matrix. In the discussion of 
the glass fibre composites Piggott [6] concen- 
trated on the polyester matrix system he studied 
with Harris [5]. In their glass reinforced plastics 
(GRP) the compressive strengths did not exceed 
0.6 GNm-2; this is, as they note, markedly lower 
than Chaplin's [8] 0.6 Vf epoxy matrix and com- 
mercial pultruded epoxy matrix composites, about 
0.95 GNm -2. It should be added that for both 
glass and carbon fibre composites tested in uniaxial 
compression which fail at the higher levels of 
applied stress [9], the most important fracto- 
graphic feature appears to be kinking. These kinks 
have also been described as "compressive creases" 
and have been attributed to local "shear insta- 
bility" or microbuckiing [8, 10]. Kinking has been 
observed in GRP compressed or bent at atmos- 
pheric pressure, particularly in specimens designed 
to give stable propagation [8]. Similarly for carbon 
fibre-reinforced plastic (CFRP) micrographic evi- 
dence of kink-associated compressive failure has 
been presented [9] in samples tested in compression 
and flexure [11] at atmospheric (and also under 
superposed hydrostatic) pressure, where propa- 
gation can be stable as a result of the stress gradi- 
ent. 

In axial testing of CFRP the superposition of 
pressure has been useful in determining whether 
the failure mechanism was controlled by shear 
stresses, as these are unaffected by hydrostatic 
pressure. Further, as Chaplin [8] argued with 
reference to his elastic instability model, in the 
presence of a hydrostatic stress component or 
reinforcement in a direction that restricts lateral 
expansion, the effect of this extra constraint 
would be an increase in the compressive strength. 

In high Vf CFRP failure was shown to be strongly 
pressure dependent; mechanisms controlled by 
shear stresses alone should thus be discounted for 
CFRP. That work, [9], however, did not result 
in identification of a critical failure condition; at 
pressures above 150MNm -2 strength appeared 
linearly dependent on pressure with a slope of 3.2, 
not predicted by any critical stress or strain 
criterion then considered, even for anisotropic 
materials. In particular we were unable to apply a 
model of buckling and fracture of individual fibres, 
developed by Weaver and Williams [1 ] to interpret 
the compressive behaviour of 0.36 Vf CFRP under 
superposed pressure and suggested buckling of the 
fibre bundles should be considered [9]. 

It is against a background with a lack of exper- 
imental support for established theories that 
Piggott [6] has proposed a theoretical framework 
within which to consider composite compressive 
strength. In it criteria relating to the operating of 
six (that he thought most likely) mechanisms are 
presented and the one satisfied at the lowest stress 
for a composite of given fibre and matrix proper- 
ties is predicted to cause failure. Piggott con- 
sidered the influence on composite strength of 
fibre strength and linearity, prior fibre curvature, 
the properties of the matrix, the adhesion between 
matrix and fibres as well as any fibre-fibre inter- 
actions. He restricted his analysis to simple com- 
pression and therefore did not consider the 
possible effects of superposing hydrostatic pressure 
- which affects different meachanisms differently- 
thus enabling, at least, some to be excluded from 
further consideration. Our objective was to study 
the failure of high Vf GRP using pressure as the 
experimental variable. 

2. Experimental procedure 
All experiments were performed on 6 mm diameter 
pultruded rod containing 60% of S glass fibres in 
an epoxy resin matrix made available by AERE, 
Harwell. Longitudinal compression (gauge diameter 
about 1.5 ram) and in-plane shear (gauge diameter 
about 6mm with an overlap of about 8mm) 
specimens were fabricated to the same design as 
reported previously in an investigation of CFRP 
[9]. These samples were also fitted with aluminium 
end rings to aid alignment within the pressure 
testing rig, which was attached to a Hedeby Uni- 
versal tester on which all testing was performed. 
Specimens of both designs were strained in axial 
compression, at a rate of 0.1 mmmin -1. The 
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3. Results 
The atmospheric compressive strength of our GRP 
material was found to be 1.15 + 0.1 GN m -2, some- 
what lower than the tensile, about 1.4GNm ~2. 
The compressive strength (maximum principal 
compressive stress) increased linearly with pressure, 
with a slope of nearly 315 (Fig. 1). Failures were 
catastrophic and separation occurred at an angle 
of approximately 30 ~ to the fibre axis. Evidence 
of kinking, e.g. Fig. 2 (for a sample tested at 
atmospheric pressure), was obtained by sectioning 
failed samples parallel to the fibres. In this case (un- 
typically) the micrograph reveals a fully developed 
kink before specimen separation had occurred. 
More usually separation took place along one of 
the boundaries, as shown in Fig. 3, which is of a 
specimen tested at 300MNm -2 superposed 
pressure. The same failure mode persisted over 
the entire range of pressures investigated which 
were up to 300 MN m -2. 

Kink band widths, distances between bound- 
aries where failure propagated, were 250 to 
500 #m and apparently unaffected by pressure (see 
Figs. 2 and 3). As the failures were catastrophic, 
it was difficult to estimate the laterial size of the 
microstructural unit (bundle of fibres) which 
initially kinked. Metallographic evidence is not 
inconsistent with its diameter being about 0.4 mm, 
as found in CFRP [9]. 

Shear strength, calculated from the prospective 
failure area for the in-plane shear specimens, was 
evaluated to be 42-+ 5MNm -2 at atmospheric 
pressure. This value, as noted previously for CFRP, 
did not vary appreciably with "overlap length". It 
is lower than that obtained, 59 -+ t MNm -2, for 
the same material using the short (10mm) span 
three-point bend testing geometry with loading 
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I I I pressurizing medium was "Plexol", a synthetic 
diester, and load, which included frictional forces 
on the loading and dummy rods, were monitored 
on a Baldwin-Lima-Hamilton semiconductor 
load cell. These forces could be determined before 
and after a sample was tested. The interpolated 
value at failure was subtracted from the total force 
to give the superposed compressive load. 

The failure surfaces of specimens of interest 
were examined on an ISI Super III scanning 
electron microscope. Other samples were mounted 
in polyester resin and sectioned and polished 
parallel to the fibre axis. Photomicrographs were 
taken on a Zeiss Ultraphot II optical microscope. 

I I 
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Figure I Maximum compressive stress for GRP specimens 
tested in axial compression under superposed hydrostatic 
pressure. 

rollers of 6 mm in diameter. This "interlaminar 
shear strength" parameter, however, was found to 
vary with the roller size, as has also been reported 
for CFRP [11], decreasing to about 48MNm -~ as 
the roller diameter was reduced to 2 mm. 

The shear strength (evaluated in the in-plane 
geometry using the minimum prospective failure 
area) increased with increasing superposed pressure 
approximately linearly with a slope of about 0.2 
(Fig. 4). The shear mode of failure along the mid- 
plane operated throughout the range of pressures 
investigated in this GRP (unlike CFRP previously 
studied, when kinking from the tip of the notches 
was observed above 150 MN m-2). 

4. Discussion 
Evidence quoted in support .of the fibre shear 
mechanism of compressive (and tensile) failure is 



Figure 2 A fully developed kink band in a failed, sectioned 
compressive GRP specimen strained at atmospheric 
pressure. 

the inclination of the fracture surfaces: approxi- 
mately at 45 ~ to the fibre axis [12]. This feature 
was observed also (approximately) in this investi- 
gation; closer examination, however, revealed this 
angle to be nearer 30 ~ and, by sectioning (see for 
example Fig. 3) the mode of failure could be 
identified as kinking. The pressure dependence of 
the strength is also inconsistent with a critical 
shear stress for failure, which predicts a slope of 
unity for Fig. 1 in place of the observed value of 
about 3.5. Models based on the shear strength of 
the fibres [2, 12], thus, can be discounted. 

It should be noted that the strengths of our 
CFRP [9] and our GRP of similar V~ of 0.6 and 
matrix are nearly equal at superposed pressures 
above 150 MN m -2. It is therefore tempting to try 
to relate kink associated compressive failure more 
with the properties of  their common matrix rather 
than the dissimilar fibres of  these composites. 

Figure 3 Fracture profile and associated kink band in a 
sectioned compressive GRP specimen strained under a 
superposed pressure of 300 MN m -2. 
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Figure4 Maximum (interlaminar) shear stress for in- 
plane shear specimens of GRP tested under superposed 
hydrostatic pressure. 

Rosen's [3] model of fibre buckling, dependent on 
matrix shear modulus, is not applicable as the 
variation of composite strength with pressure 
would then be that of the modulus, which is only 
weakly pressure dependent for epoxies [1]. The 
slope predicted for Fig. 1 would thus be < 2 rather 
than > 3, which was observed. This model has also 
been criticized on other grounds, in particular the 
predicted values of  composite strength, %, are 
grossly overestimated for CFRP and GRP and it 
fails to predict the observed variation with V~ [5]. 

In discussing the CFRP data [9] we have 
already discounted Eulerian buckling of individual 
fibres, but found the kink band widths and other 
microstructural features are not inconsistent with 
buckling of groups of fibres. The fibre bundle size 
was then found to be about 0.4mm in diameter; 
interestingly Piggott, when analysing results on 
the compressive strength of a composite contain- 
ing curved fibres, concluded that, to be consistent 
with his model [6] of failure by debonding or 
matrix yielding, groups of about 2000 fibres 
"must behave in unison". This model, based 
on an earlier analysis of  Swift [7], was developed 
for composites containing fibres initially with 
sinusoidal curvature. Even for initially (nominally) 
straight fibres, however, the role of  the matrix 
cannot be ignored when considering microbuckling 
of fibre bundles. This buckling, which causes 
lateral displacement before the critical load is 
attained, occurs against the support of the resin 
matrix. If failure is initiated when this support is 
lost (locally), i.e. when the matrix yields, continued 
straining will cause gross deformation in this area 
(from which failure would propagate) and resin 
yielding or splitting spreading along the bundle 
boundary. Our interpretation of d in Equation 1 
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is thus the bundle diameter, D (see Fig. 5), not 
the fibre, and thus the bundle and composite 
compressive strength is: 

8R a t 
%~ m y) -  7rD (2) 

The estimate of the bundle diameter,.D, con- 
sistent with the observation on CFRP [9] and 
Piggott's 2000 fibres behaving in unison [6], is 
about 0.4 nun. Piggott's analysi s concentrated on 
initial curvature and suggested the relevant mech- 
anism to be the overcoming of the compressive 
strength of the resin. We would postulate, how- 
ever, that it is the axial compression which causes 
bending of the fibres until buckling of a surface 
bundle can overcome the restraint of  the matrix, 
which is exerting a tensile stress, o't, to cause 
kinking. This interpretation appears equally con- 
sistent with Piggott's [6] for the data of Piggott 

S 

I TM 

Figure 5 Profile of an outer fibre bundle of diameter, D, 
bent to a radius of cuTvature, R, by an axial compressive 
load and being restrained by the composite matrix of 
yield strength, a~. It is postulated that the width of the 
resultant kink band is associated with one-haft of the 
segment length, S. 
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and Harris [5] on a series of glass/polyester compo- 
sites in which the composite strength, ae ~ 9at. 
It should be added, however, that Piggott's esti- 
mate of amplitude, a, in Equation 1, as 4 "fibre" 
diameters, if these are in bundles, seems excess- 
ively large. 

As catastrophic failure of our GRP prevented 
examination of buckled fibres (prior to kink 
propagation), there was no simple way of measur- 
ing a or R,  the radius of curvature of bent fibre 
bundles. If  Equation 2 is assumed to hold, how- 
ever, and, consistent with our data for 0.6 V~ GRP: 

Oe(my  ) = 1.15GNm -2 (compressive strength 
of the bundle and the 
composite) 

at = 80 MN m -2 (tensile strength of 
matrix) 

D = 0.4ram (bundle diameter) 

R evaluates to 2.3 mm. A value of 80MNm -2 was 
used for a t as in a previous study of two epoxy 
resins Wronski and Pick [13] found the tensile 
yield strengths to be 67 and 88 MN m -2 and the 
compressive strengths to be 90 and l l 9 M N m  -2, 
respectively. 

It should be recalled that the yield strength of 
polymers (unlike that of  metals) is pressure 
dependent. For the two epoxides the superposed 
tensile stress for yield increased with pressure, H, 
by - -0 .19H [13]. The fractional increases in yield 
strength, per 100MNm -2 of pressure, were thus 
0.28 and 0.22, respectively. (The corresponding 
figures for the superposed compressive stress for 
yield per 100MN m -2 pressure, are 0.27 and 0.20 
[13].) These values are similar to those of the slope 
of the GRP compressive strength versus pressure 
plot (Fig. 1), a 0.30 increase in strength per 
100MNm -2 superposed pressure. The behaviour 
of GRP and CFRP in axial compression beyond 
150 MN m -2 pressure was similar to that observed 
by Parry and Wronski [9]. Therefore, the pressure 
strengthening observed in these brittle fibre- 
reinforced resins can be interpreted as caused by 
the pressure dependence of yielding of the matrix. 
Strengthening of the matrix may thus be expected 
to inhibit failure initiation in simple compressive 
loading. In CFRP below the critical pressure, 
matrix yielding and resultant splitting off of  
a surface bundle are suggested as being easier 
than bundle buckling. Accordingly fibre bundle 
buckling, Oe(bb), with a smaller pressure depen- 



dence, controls failure (Fig. 6). The weak pressure 
dependence of OeCob) shown in Fig. 6 can be inter- 
preted along the lines suggested by Chaplin [8]. 

It would appear that our GRP data are con- 
sistent with the matrix yielding-controlled initiation 
stage being critical in the composite failure process 
in the entire pressure range investigated. Let us 
now consider the apparently easier propagation 
stage in GRP which we associate with bundle kink- 
ing. It is suggested that, when restraint of the 
matrix is locally overcome, a yielded or debonded 
zone propagates along the bundle boundary until 
the buckled bundle can undergo kinking. In the 
absence of criteria for kink initiation and propa- 
gation, we take the upper bound, the load/lateral 
extension criterion of Euler [14], which trans- 
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Figure 6Compressive strength of 0.6Vf CFRP under 
superposed hydrostatic pressure [9]. It is postulated that 
in the first segment, < 150 MNm -~ superposed pressure, 
failure is governed by fibre bundle buckling, o e (bb), and 
in the second, > 150MNm -2 superposed pressure, matrix 
yielding, o e (my) criteria. 

formed into a bundle (and composite) compressive 
stress is: 

7r2Ee 
ocCob)- (I/K)2 (3) 

where E e is the composite modulus, about 
48 GN m -2, K, the radius of  gyration and l, the 
buckling length. With no delamination (as in 
CFRP) it was not possible to measure l but (con- 
sistent with CFRP data) if it is assumed to be 
about 3 mm, for K 2 of 0.01 mm 2, oe0,b) evaluates 
to about 0.5 GNm -2, i.e. less than the observed 
compressive strength of our GRP. This result 
implies that the bundle buckling condition, 
Equation 3, is easier to satisfy in this GRP than 
the matrix yielding criterion, Equation 2, which 
controls accordingly the composite compressive 
strength, %, in a strong matrix high V~ glass fibre 
composite. 

For weak matrices, e.g. the polyester studied 
by Piggott and Harris [5], %(bb) could be more 
difficult to attain than %(my) and thus equal %. 
In CFRP, on the other hand, E e is appreciably 
greater and, if l and K remain unaltered in 
Equation 3 and Ec = l l 0 G N m  -2, then %(bb) 
becomes 1 .2GNm -2, i.e. greater than %(my) of 
Equation 2. Thus, unless the matrix strength is 
very high, Oc(bb ) should control %. In our study 
[9] of CFRP, % was in fact 1 .5GNm -2 and 
was associated with bundle buckling. This atmos- 
pheric pressure value rose only to 1.6 GNm -2 at 
150MNm -z superposed pressure, when, it is 
proposed, bundle buckling became easier than 
splitting (which accordingly no longer occurred), 
failure being governed by the matrix yielding 
criterion, Equation 2. Thus only above the tran- 
sition pressure did the CFRP behaviour closely 
resemble that of GRP reported now. 

Failure of the in-plane shear specimens over 
the entire pressure range was by shear cracking. 
This contrasts with the behaviour of CFRP where 
a transition from shear cracking to kinking from 
the notch tips was observed. Kinking was probably 
not observed in these GRP samples because, with 
the reduced failure loads (as a result of lower 
values of shear strength), the concentrated com- 
pressive stresses at the notch tips were insufficient 
to initiate kinking. The atmospheric GRP value of 
shear strength, 42 +- 5 MNm -2, is in the range of 
yield stresses of most epoxy resins and also shows 
the similar fractional pressure dependence, about 
0.2 per 100MNm -2 of superposed pressure. This 
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composite property therefore can also be inter- 

preted in terms of  the matrix strength. 
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